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I. INTRODUCTION

Development of new constitutive models for finite element applications

represents a very important area of research in engineering disciplines.

This is evidenced by research activities, for example, associated with high

temperature composites [1,2], reinforced concrete [3], geotechnical materials

[4,5]. The efforts in constitutive research involve the development of

mathematical relationships for predicting nonlinear response of materials,

derivation of material stiffness matrix appropriate for finite element calcu-

lations, computer implementation, and finally, coding verifications. Obvious-

ly, the entire process requires a great deal of manual algebraic manipula-

tions and computer programing. Hence, the response time for the related ef-

forts is quite long, in the order of many months. As a result, it is rather

difficult for the researcher to introduce any significant changes or modifi-

cations into the constitutive theory, since the required effort is rather te-
+,

dious. Moreover, the outcome of research workLmay be affected by human errors

which are often difficult to detect. In view of this discussion, it is ap-

parent that symbolic manipulations can provide a significant incentive to the

development of constitutive theories and their finite element applications.

With the availability of MACSYMA or VAXIMA (i.e. VAX computer version of

MACSYMA), it becomes possible to derive the required material matrix of a

constitutive model in an efficient way. The obvious advantages of using VAX-

IMA are several: i) reduce manual tedium for deriving the material stiffness

matrix, ii) improved reliability of analysis results, iii) quick response

time for constitutive model development. However, direct application of VAX-

IMA will not be trouble-free. One major obstacle is the exponential growth

of algebraic expressions during intermediate derivations, which requires

significant storage space and increased computer time. Moreover, it is also



possible to convert the derived expressions directly into Fortran coding.

Then problems associated with modularity and interface with the main program

must be addressed.

Application of symbolic manipulations to finite element analysis is not

new. Most of the previous work was concentrated, however, on the derivation

of element stiffness and mass matrices [6-11]. No published work was found

on the application of this procedure to the development of material matrices,

although the general concept is somewhat similar. The objective of our re-

search is to use symbolic manipulations for the derivation of a class of mat-

erial matrices for finite element analysis; namely, elasto-plastic materials.

The scope of our work includes derivation of material matrices and automatic

Fortran code generation. In this paper, we will demonstrate a systematic ap-

plication of the symbolic mathematical package, VAXIMA, the method of expres-

sion simplifications, and code generation in the form of RATFOR. Three sam-

ple constitutive models are included to illustrate the procedures developed.

They are: von Mises metal plasticity, Drucker-Prager soil plasticity model,

and a plasticity-based model for concrete. These models have been extensive-

ly used for different finite element analyses in structural and geotechnical

engineering fields.



2. THEORETICALEQUATIONS

For the sake of discussion, the stress-strain equations for elasto-

plastic materials are briefly outlined in this section. More detailed des-

criptions of these relations can be found in several texts [e.g., 12-14]. It

is noted that our primary purpose here is to derive the general form of the

material stiffness matrix as commonly used in the displacement-based finite

element analysis.

The first basic assumptions in the incremental (flow) theory of plasti-

city is the additive decomposition of the total incremental strain vector,

e
de, into elastic and plastic components, de and d_p , respectively. In ad-

dition, the incremental elastic strain components are often assumed to be

linearly related to the increment of stress vector (generalized form of

Hooke's Law),

E
do = C (dE - d_p) (1)

where CE is an elastic material stiffness matrix.

Thus, the main task in the formulation of the elasto-plastic model is

concerned with establishing the manner in which the plastic strain increments

are related to the stress increment vector and the history of deformation.

To this end, three fundamental assumptions of plasticity theory are employed.

These are: i) the yield (loading) function defining the limit of elasticity

of the material during the course of plastic deformations ii) an appropriate

hardening rule specifying the manner for the evolution of the yield surfaces

during plastic straining (e.g. isotropic, kinematic, or mixed hardening, etc)

and iii) a flow rule that provides the general form of the incremental plas-

tic stress-strain relationships (e.g. associated flow or normality rule, or

the non-associated flow rule).
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Under isothermal conditions, the yield function is expressed as

f : f(a , k) (2)

where a is the stress vector, and k represents a strain-hardening parameter

which may vary as a function of plastic deformation history or other state

variab]es. Note that, in general, one or more strain-hardening parameters

may be used, and these may actually be scalars (e.g., accumulated plastic

work) or tensorial quantities (e.g., plastic strain components). However,

for convenience, we only use one scalar hardening parameter here, since all

of the specific plasticity models considered are of this type. Also, asso-

ciated flow rule is employed in the three models discussed.

Adopting the normality rule, the plastic flow (or increment of plastic

strain vector) is given by

d¢p : dX @-J-f (3)

where dx is a positive scalar quantity often referred to as the loading para-

meter or plastic multiplier, which generally depends on the current state of

stress a, incremental stresses da, and loading history.

Basedon the above relationships, and employing the so-called consis-

tency condition [13], one can easily derive the general form of the incre-

mental stress-strain equations for a material undergoing plastic deformations

[12,14]; that is

EP
where C

which has the form

P
where C

EP
da = C d¢ (4)

designates the familiar elasto-plastic material stiffness matrix

EP E P
C :C -C (5)

is a plastic matrix given by



af_TCE. (___.) (£E. "a_"

CP -_ ,-. ,,,

~ 'af T CE (_._.)+(_) (a_._pc)af af T af (6)

EP
In addition to the relationship in Eq. (4), the matrix C

N

is also used for

T EP
the evaluation of element stiffness matrix k = fff B C B dv.

It is seen from Eq. (6) that in order to obtain specific expression for

EP
the elasto-plastic matrix C , one has to manipulate the derivatives of

P
yield function with respect to _ and c and then carry out appropriate matrix

multiplications. For a complex mathematical expression of f, the associated

manipulation can be quite tedius if it is done manual|y. In the next sec-

tion, we outline the procedure through which this can be done conveniently by

symbolic manipulations using VAXIMA.



3. SYMBOLICMANIPULATIONS

In order to find the explicit expression of elasto-plastic matrix, i.e.,

Eq.(5), for a given material model, four types of mathematical manipulations

need to be employed; i) differentiations of the yield function with respect

to the stress or other variables, ii) matrix multiplications, iii) grouping

of like-terms, and iv) expression simplifications. It was pointed out ear-

lier that in most cases the results obtained from direct application of VAX-

IMA would not be useful due to theproblem associated with expression growth.

For this reason, a strategy must be developed to obtain an optimal (or simp-
EP

|ified) form for the matrix C . The essence of our strategy consists of:

1. A structured derivation procedure to avoid redundant manipulations

and to minimize expression growth.

2. Factorization and expression simplification through user interven-

tion with interactive coding.

3. Introduction of intermediate variables.

4. Taking advantage of permutation and symmetry relationships of the

terms and matrix involved during intermediate derivations.

With the above guidelines in mind, the derivation of elasto-plastic

material matrix, i.e. Eq. (5), involves the following:

1. Finding the derivatives

and

3f
(_) : (_11' _22 ' @_12'

q = (@._ff): ( Bf , @._._f , @.____f I Bf 1 Bf 1 Bf
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P

Performing matrix multiplications for the numerator of C

E
C • P

and for the denominator:

T E T
P C P and p • q

3. Conducting expression simplifications during the course of derivations.

Two simplification conditons are often used for substitutions:

$11 + $22 + $33 = 0 (7)

and

2 2 2
+ + S

$11 $22 33

2 2 2

2($12 + S ) = 2J (8)+ + $23 31 2

In the sequel, three specific examples of plasticity material models are

employed to demonstrate our procedure outlinedLin the above.

3.1

for metal plasticity as an example to demonstrate our procedure.

yon Mises Metal Plasticit>, Model

We consider first the von Mises model with isotropic strain hardening

In this

case, the yield function f is given by

1 ST S - k2
f : _ ~ ~

where S represents the vector of stress deviators and
~

(9)

S = (_ - o • 6 (I0)
~ ~ m ~

6 is a vector of Kroneckle delta

6 : (1,1,1,0,0,0) (11)
~



and o
m

is the mean stress, a scalar quantity given by

om = ½ (°11 + a22 + a33 ) (12)

The parameter k is a function of plastic work

k = k(Wp)

Also note that k is related to the effective stress o
e

by [12]

(13)

k = _1 a

3 e
(14)

Using VAXIMA, at first we evaluate

= ($11,$22,$33,2S12,2S23,2S31)
(15)

and

q = H(o
~ 11'°22'°33'°12'°23'°31 )

(16)

In the above, the common factor H is the so-called plastic modulus and it

is found to be

Next, evaluating

P
The numerator of C

2 @f

H : -.3- _e @W_p (17)

E
y=C • p

E

= (l+v) (1-2v)

is equal to

T 2
y • y = 4G • S

~ ~2

(l-v)S11+uS22+vS33

vSI1+(I-v)S22+vS33

vS11+vS22+(I-v)S33

(1-2v)S12

(1-2v)$23

(1-2v)$31

(18)

(19)
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where G is the shear modulus, and S2 is a 6 x 6 matrix in which the entries

are the products of stress deviators, i.e.,

S2 = S •

P

Then, we evaluate the denominator of C

two simplification conditions given in Eqs. (7) and (8).

T
S (20)

• For this purpose, we utilize the

Thus, the follow-

ing simplified expressions can be found

and

T E 4 2
p C p = _G. a (21)
~ ~ ~ e

T 2 2
p • q = _ H o (22)
~ ~ e

By combining Eqs (19), (21) and (22) with Eq. (5), we finally obtain

cEP = CE " 3G • S2 (23)~ ~ 2
o (H + 2G)
e

The above expression corresponds to that given in [5].

3.2 Drucker-Prager Soil Plasticity Model

We now consider a more complex material model; namely, the Drucker-

Prager, perfect-plasticity model used extensively for geotechnical materials.

In addition to the above procedures, intermediate variables have to be intro-

duced in this case in order to avoid the problem of expression growth. The

yield function of Drucker-Prager model assumes the form [16]

f = jl/2 + _ I - k (24)
2 1

where 11 is the first stress invarient; J2 is the second invarient of stress

deviators; _ and k are material constants.

g



If we follow the sameprocedure for the von Mises model without intro-

ducing any intermediate variables, growth of algebraic expressions becomes

P

apparent. For example, the first three entries in the first row of C are

listed in Fig. 1. There are twenty-one similar entries when the symmetry

P
condition of C is taken into consideration. However, after we have

introduced the intermediate variables a and ff,

a = (al, a2,...a6) (25)

ff = (ffl, ff2,...ff6) (26)

where ai, ffi are defined in Fig. 2, then

EP T
C = ff • (ff) (27)

Of course, in computer coding we only need to perform matrix multiplication

EP
for either the upper or lower half of C owing to its symmetry properties.

3.3 Concrete Plasticit_ Model

The f)nal illustrative example to be considered here is a concrete plas-

ticity model proposed recently by Chen and Chen [13,17]. The derivation of

elasto-plastic matrix for this hardening plasticity model is quite tedius due

to its complex mathematical expressions. In fact, through the use of symbol-

ic manipulations an error was found in the coefficient of the plastic matrix

published in the literature in [12,13,17]. The error is associated with

the shear stress terms, which usually do not appear for simple test cases

like simple compression or biaxial compression tests that have been used in

various model verifications. Moreover, the error terms do not appear when the

model is reduced to the von Mises theory.

The yield function of the concrete plasticity model is given by
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J2 + _I1+nI_ 2
f . - T : o (2B)

1 - 11

where _ and B are material constants; T is an effective stress; n, a parame-

ter, whose definition varies with the stress state: n = 0 for compression -

compression stress states; n = -1/6 for tension - compression or tension -

tension stress states.

For this model, the prob|em of expression growth becomes prohibitive if

intermediate variables are not introduced. By successive manipulations with

VAXIMA the following variables are identified:

I (p . 6 + _) (29)a: _ ~

A

S = ($II, $22, $33, 2S12, 2S23, 2S31) (30)

6 : (1, i, i, 0, 0, 0) (31)

i I
w

w E2
C

(u + v) (32)

H [2J2 + 3p2 (33)

EC 2
v = -'2- [2J2 + 3p + v(4d 2 + 302)] (34)

m

E (35)
Ec = (l+u'}"('l-2v)

11



p = nlI + + (B + _T 2) (36)

11 (37)m = I -

where E = Young's modulus, v = Poisson's ratio, and H = plastic work harden-

ing paratmeter. It is noted in the above that the underlined terms for u

were missing in the published expression [12]. The addition of these terms

was verified by both symbolic manipulations using VAXIMA and independent man-

ual derivations.

Moreover, we introduce a vector ff(i), i=1, 2, ..., 6, of which the
aN

first three components are given by

ff(i) = (I + v n) a(i), i=1, 2, and 3

and the last three components are

ff(i) = (_--_)_ • a(i), i=4, 5 and 6.

where I is a 3 x 3 identity matrix and

n

-1 1 1

1 -i 1

1 1 -1

The above procedure has been written in LISP program ]anguage with di-

rect access to the internal data structure of VAXIMA. Hence, the package can

be used for the symbolic manipulations of any elasto-plastic material matrix

with two special features: i) no expression growth problem, and ii) high ef-

ficiency in terms of CPU time.

12



4. AUTOMATICCODEGENERATION

There is a definite advantage to convert the generated symbolic expres-

sions into FORTRANstatements for finite element computations. By doing

so, not only can the manual effort be avoided, but also it provides in-

creased reliability on the constitutive relations. Instead of generating

FORTRANdirectly, we have utilized a generator Called GENTRAN(symbolic to

numerical code GENerator/TRANslator)[18] which has the ability to produce a

RATFORor C program in the form of a subroutine or part of a subroutine.

Subsequently, the FORTRANstatements are generated from the RATFORthrough a

preprocessor.

Several systems are available in converting symbolic expressions to FOR-

TRANstatements, such as MACTRAN[19], VAXTRAN[20] and REDUCE[21]. The

MACTRANPackageconverts MACSYMAequations and other expressions into FORTRAN

code, and provides a text processor which allows the derived FORTRANcode

segments to be interspersed with fixed code fr_ program skeletons. Similar

features are given in the REDUCEand VAXTRANsystems, except that VAXTRAN

was written specifically for VAXIMA. All these packages represent a first

step towards providing an interface between symbolic manipulations and nu-

merical computations. However, they do not provide a convenient way to gen-

erate statements such as declarations, control-flow structures, I/O state-

ments, functions, and subroutines. These statements, in general, are neces-

sary for generating a complete and efficient FORTRANprogram. For this rea-

son, we have chosen to use a package called GENTRANwhich was written in

FRANZLISP under the VAXIMAenvironment.

The immediate concern in generating a subprogram to interact with a

finite element code is the interface problem. To minimize such problems, we

have designed a template file shownin Fig. 3 which is somewhatuniversal for

13



various finite element codes. For a specific plasticity material model (such

as the von Mises or Drucker-Prager model), the material matrix subroutine is

completed by including the generated statements in the template file as indi-

cated in Fig. 3.

To demonstrate how the RATFOR code is generated by GENTRAN, we consi-

der again the von Mises model. First, we define the S2 matrix according to

Eq.(18). Secondly, the elasto-plastic matrix cEP is evaluated from Eq. (23).
N

Let

S(i) = components of stress deviator, i = 1, 2, ..., 6.

CE(i,j) = elastic material matrix

CEP(i,J) = elasto-plastic matrix

CP(i,j) = plastic material matrix

FACTOR = 3G

Z (H+2G)
c e

Then the RATFOR code for the von Mises model is given as follows:

i. for (i=l; i<=6; i=i+l)

2. for (j=i; j<:6; j=j+l)

3. CP(i,j) : FACTOR * S(i) * S(j)

4. for (i=l; i<=6; i=i+l)

5. for (j=i; j<=6; j=j+l)

6. CEP(i,j) : CE(i,j) - CP(i,j)

7. CEP(j,i) = CEP(i,j)

The translated FORTRAN code can be found in the Appendix.

The RATFOR code of the Drucker-Prager model is slightly different from

that of the von Mises mode| due to the use of intermediate variables. In

this case, let

14



FF(i) = intermediate variables as defined in Eq.(26), i=1,2,...,6.

FACTOR= 1/(G + _B)

v = Poisson's ratio

Then the RATFORcode is

I. for (i=1; i<=6; i=i+1)

2. for (j=i; j<=6; J=J+!)

3. CP(i,j) = FACTOR* FF(i) * FF(j)

4. for (i=I; i<=6; i=i+1)

5. for (j=i; j<=6; j=j+1)

6. CEP(i,j) = CE(i,j) - CP(i,j)

7. CEP(j,i) = CEP(i,j)

The translated FORTRANcode for the Drucker-Prager model is given in the

Appendix.

Finally, with the introduction of the intermediate variables in Eqs.

(29)-(37), which were obtained through the factorization of VAXIMA,the

RATFORcoding of the concrete model becomesidentical to that of the Drucker-

Prager model. The corresponding FORTRANcode is listed in the Appendix.

15



5. CONCLUSION

A systematic procedure to perform symbolic manipulations using VAXIMA

and FORTRANcode generation of elasto-plastic material matrices for finite

element applications has been developed. The unique features of the proposed

procedure are: i) the problem of expression growth was alleviated by intro-

ducing intermediate variables and step-wise expression simplifications, ii)

the material matrix is automatically converted into FORTRANcoding, and iii)

the use of a template file to ease the interface problem. This procedure can

be applied not only to plasticity models with associated flow rules, but also

to models with non-associated flow rules.

The potential benefits of the proposed procedure are two-fold: i) it

can avoid manual tedium for constitutive model development, and ii) it pro-

vides increased reliability on the model for finite element applications.

The sameconcept can be extended to other types of constitutive model devel-

opment. For example, in the finite element analysis of viscoplastic consti-

tutive models, the formation of Jacobian matrix for numerical integration

requires lengthy algebraic manipulations of the rate stress-strain equations.

Such manipulations can be easily performed by a well-designed VAXIMAproce-

dure. Once the mathematical relations are derived, automatic code generation

should becomeapparent.
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E
C = (1+v}(1-2v)

I_ 1 6a2
_.- _ [(l-2v) + (l+v)]

1
J2 = _ Sij Sij

wC2 [4a2j 2 4a J2 + $2_ - 4a ,.I2-

2 2 2
+ 2S S + S + 8_ v J + 4av J S - 4v S

22 33 33 2 2 22 22

2
- -4vS

+ 4av J2 $33 8,.,$22 $33 33

2 2

+ 4a v J2

2 2 2 2
+ 4v S + 8 av "J _iS

+ 8_v J2 $22 22 2'; 33

2 2 2
+8v S S +4v S ]

22 33 33

wC2 [40.2J2 - $2_ - 2a J2 $33 - $22S33

2 2
+ 8a v J + 4vS + 2a v J S + 4vS S

2 22 2 33 22 33

2 2 2 2 2 2

+ 4av J S - 4',.,S $33]+ 4.a v J2 " 4v $22 2 33 22
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2

_2 [4:2J2- S_3 " 2: J2 S22- S22 S33

2 2
+ 8_ vJ + 4vS + 2:v J S + 4_S S

2 33 2 22 22 33

22 2 2 2 2

+ 4=v J $22 - 4v S S+ 4_ u J2 - 4_ $33 2 22 33

etc.

Figure 1 Typical Entries of P|astic Matrix of Drucker-Praeger Model
Without the Use of Intermediate Variables.
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1
aI = _ + _ SII

1

a2 = _ + T2 $22

I ,

a3 -- _ + T2 $33

I

a4 : T S12

1

a5 : T s23

i

a6 : T s31

ff = (l-2v) a + v a ,
i i o

i = i, 2, or 3

ffj : _ • aj , j = 4, 5, or 6

a : a +a +a
o i 2 .3

Figure 2 Intermediate Variables for Expression Simplification of

Drucker-Praeger Model
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C
C
C
C
C
C
C
C
C
C

C
C
C

C

C
C
C

C
C

SUBROUT I NE EPMTR I X (STRESS, STRA I N, CEP, H )
$ $ $ $ $ $ $ t t $ t I $ $ $ $ $ $ $ $ $ $ $ $ $ $ t $ $ $
$ $
$ A TEMPLATE FOR ELASTO-PLAST IC MATER IAL MATRIX $

$ $

CEP - ELASTO-PLASTIC MATRIX;

E - YOUNG'S MODULUS

CONI,CON2,

H - STRAIN HARDENINB PARAMETER

PV - POISSON'S RATIO

ADDITIONAL MATERIAL CONSTANTS

COMMON /MDATA/ E,PV, CONI,CON2,CON3,CON4, CON5 .....
D I HENS I ON STRESS ( 1 ) , STRA I N ( 1 ), CEP (6, & ), CE (6, & ) , CP ( 6, & )
DIMENSION A (6), FF (6)

DEFINE ELASTIC MATERIAL MATRIX

DO 10 I = 1,6

DO 10 J = 1,6

10 CE(I,J) = O.
COEF = E/((I. + PV) t(I. - 2. tPV))

CE(1,1) = COEFt(1. - PV)

CE(1,2) = COEF$PV

CE(1,3) = COEFSPV

CE(2,2) = CE(1,1)
CE(2,3) = CE(1,3)

CE(3,3) = CE(1,1)

CE(4,4) = COEFt(1. - 2.$PV)/2.0

CE(5,5) = CE(4,4)

CE(6,6) = CE(4,4)

DO 20 I = 1,6

DO 20 J = 1,6

20 CE(J,I) = CE(I,J)

DEFINE STRESS DEVIATORS

SIGH = (STRESS ( 1 ) +STRESS (2) +STRESS (3))/3.0
$11
$22

$33

$12

$23

$31

= STRESS(I) - SIGH
= STRESS(2) - SIGH

= STRESS(3) - SIGH

= STRESS (4)

= STRESS (5)

= STRESS (&)

GENERATED FORTRAN CODE

RETURN

END

Figure 3 A Template File for El.asto-Plastic Material Matrix
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APPENDIX

C
C
C
C
C

VON MI SES METAL PLASTIC ITY

DEFINE MATER IAL PARAMETERS

2300

2303

23O5

2302

2306

2309

2311

2308

2312

2315

2317

2314

G

XJ2

FAC

A(1)

A(2)

A(3)

A(4)

A(5)

A(6)
I=1

IF(.

a=I

=E/(2.0I(I+PV))
=($11_$11+$22_$22+$33_$33+25($12$$12+$23,$23+$31lS31))/2-0

=S/(XJ2$(H+2*B))

=$11

=$22
=$33

--$12

=$23

=$31

NOT. (I. LE. 6) )GOTO 2302

IF (.NOT. (J. LE. &) )GOTO 2305

CP (I, J) =FACtA (I) =A(J)
J=J+l

GOTO 2303

CONT INUE

I=I+l

GOTO 23O0

CONT INUE

I=1

IF(.NOT. (I.LE.5))GOTO 2308

J=I+l

IF(.NOT. (J.LE.&))GOTO 2311

CP(J, I)=CP(I,J)
J=J+l

GOTO 2309

CONT INUE

I=I+l

GOTO 230&

CONT INUE

I=1
IF(.NOT. (I.LE.&))GOTO 2314

3=1
IF(.NOT. (J.LE.&))GOTO 2317

CEP (I, J) =CE (I, J)-CP (I, J)
J=J+l

GOTO 2315

CONT INUE

I=I+l

GOTO 2312

CONT INUE

A:I



C
C
C
C
C

2300

2303

23O5

2302

2306

2309

2311

2308

2312

DRUCKER-PRAGER MODEL

DEFINE MATERIAL PARAMETERS

AFA =CON1
COEF=E/((I+PV)$(1-2$PV))

XJ2 =($115SlI+$22lS22+$33lS33+2$($12_$12+$23$$23+$315S31))/2.0

PQ =0
QTCQ=COEF/2*((1-2*PV)+&IAFAI$2$(I+PV))

WINV=QTCQ+PQ
W =COEFI$2/WINV

A (1)=AFA+ 1/SQRT (XJ2) IS 11/2.0

A (2) =AFA+ 1/SQRT (XJ2) IS22/2.0

A (3) =AFA+ 1/SQRT (XJ2) *$33/2.0

A (4) =I/SQRT (XJ2) IcS12

A (5) =I/SQRT (XJ2) IS23

A (6) =1/SQRT (XJ2) IS31

SUM =A (1)+A (2) +A (3)

FF (I)= (1-21PV) IA (1)+SUM*PV

FF (2) = (1-21PV) SA (2) +SUMIPV
FF (3) = (1-2*PV) SA (3) +SUM_PV

FF (4)= (1-25PV) _A(4)/2.0

FF (5) = (1-2$PV) IA (5)/2.0

FF(6) = (1-2_PV) IA (6)/2.0

I=1

IF(.NOT. (I.LE.6))GOTO 2302

a=I

IF (.NOT. (J. LE. &) )GOTO 2305

CP (I, J) =W_FF (I) _FF (J)
J=J+l

GOTO 2303
CONT INUE

I=I+l

GOTO 2300

CONT INUE

I=1

IF (.NOT. (I. LE. 5) )GOTO 2308

a=I+l

IF (. NOT. (J. LE. 6) )GOTO 2311

CP(J, I)=CP(I, J)
J=J+l

GOTO 2309

CONT INUE

I=I+l
GOTO 2306

CONTINUE

I=1
IF(.NOT. (I.LE.6))GOTO 2314
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2315

2317

2314

J=l
IF(.NOT.(J.LE.&))GOTO 2317

CEP(I_J)=CE(I_J)-CP(I_J)
J=J+l

60TO 2315

CONTINUE

I=I+l
GOTO 2312

CONTINUE
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C
C

C
C
C

CONCRETE PLASTICITY MODEL

DEFINE MATERIAL PARAMETERS

2300

2303

23O5

2302

2306

2309

XA =CON1

XB =CON2

XN =CON3

XM =I-XA$SIGM
COEF=E/C(I+PV)$(1-2$PV))

SIG3=3tSIGM
=($11$$11+$225S22+$33$$33+21($12,$12+$23*$23+$31$$31))/2.0

=SQRT((XJ2+XN$SIGM$SIGM/2.0+XA$SIGM/3.0)/XM)
=2$TUSH
=XHtSIGM+(XB+XASTUtTU)/3.0
=(HP/XM) tSQRT(25XJ2+35RO$$2-21(Si2tt2+S23552+S31t$2))
=COEF/(XMtXM) t(2$XJ2+3tP$t2)$(1-2tPV)

XJ2

TU
HP

RO

U

V

WINV=U+V

W =COEF$$2/WINV

A (1)= (RO+S11 )/XM

A (2) = (R0+$22)/XM
A (3) = (R0+$33)/XM

A (4) =25S12/XM

A (5) =21S23/XM

A (6) =2tS31/XM

SUM =A (1) +A (2)

FF (1)= (1-2tPV)

FF (2) = (1-2tPV)

FF (3) = (1-25PV)

FF (4) = (1-2tPV)

FF (5) = (1-25PV)

FF (6) = (1-25PV)

I=1

IF (.NOT. (I.LE.

J=I

IF (.NOT. (J. LE.

CP (I, J) =WtFF(I
J=J+l

GOTO 2303

CONTINUE

I=I+l

GOTO 2300

CONT INUE

I=1

+A (3)

SA (I)+SUMtPV

SA (I)+SUMtPV

SA (3) +SUMSPV

tA (4)/2.0

SA (5)/2.0

SA (6)/2.0

6))GOTO 2302

6) )GOTO 2305

)SFF (J)

IF (.NOT. (I. LE. 5) )GOTO 2308

J=I+l

IF(.NOT. (J.LE.6))GOTO 2311

CP(J, I)=CP(I,J)
J=J+l
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2311

2308

2312

2315

2317

2314

GOTO2309
CONTINUE
I=I+!
GOTO2306
CONTINUE
I=1
IF(.NOT.(I.LE.&))GOTO
J=l

IF(.NOT.(J.LE.&))GOTO

CEP(I_J_=CE(I_J)-CP(I_J)

J=J+l

GOTO 2315
CONTINUE

I=I+l

GOTO 2312
CONTINUE

2314

2317
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